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Abstract

Based on three-dimensional elastic theory of piezoelectric materials, the axisymmetric state space for-
mulation of piezoelectric laminated circular plates is derived. Finite Hankel transforms are used and the
boundary variables in free terms are replaced, for two kinds of boundary conditions, to obtain ordinary
differential equations with constant coefficients. Regarding the axisymmetric free vibration problem, two
exact solutions for two different boundary conditions are found. Discarding piezoelectric effect, the exact
solutions for transversely isotropic circular laminates are also obtained through the same procedure. Numeri-
cal examples are given and compared with those of Finite Element Method (FEM). © 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

The thin plate theory has been widely used in static and dynamic analyses of relatively thin
plates, but it is not suitable for thick plates and laminates, particularly for higher modes of the
plates. Mindlin (1951) published the plate theory which includes the effects of rotatory inertia and
shear deformation. Based on this plate theory, Deresiewicz and Mindlin (1955) and Deresiewicz
(1956) obtained the solutions of axisymmetric flexural vibration of a free circular disc and sym-
metric flexural vibration of a clamped circular disc, respectively. Kane and Mindlin (1956) pre-
sented the theory of high-frequency extensional vibration of circular plates. Reismann (1968)
investigated the forced motion of a clamped circular plate using the Mindlin theory.

Srinivas and Rao (1970) exactly investigated the bending, vibration and buckling of simply
supported thick orthotropic rectangular plates and laminates based on a three-dimensional elas-
ticity theory. Iyengar and Raman (1977) made an investigation on the free vibration of thick
rectangular plates employing the method of initial function which was first introduced by Vlasov.
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Lee and Jiang (1996) employed the state-space-based method (i.e. the method of initial function)
to exactly analyze the electroelastic behavior of piezoelectric laminated plates and obtained the
exact solution of a simply supported rectangular plate with numerical examples presented. Chen
et al. (1997) independently derived the exact solution of a thick piezoelectric rectangular plate also
using the state-space-based method. Heyliger and Brooks (1995) presented the exact solutions for
the free vibration behavior of simply-supported piezoelectric laminates in cylindrical bending for
the case where the electrostatic potential or the normal electric displacement is specified to be zero
at the upper and lower surfaces of the laminate. Heyliger and Saravanos (1995) developed the
three-dimensional exact solutions for predicting the coupled electromechanical free vibration
characteristics of simply supported laminated piezoelectric plates composed of orthorhombic
layers. Batra et al. (1996) performed the analysis of a simply supported rectangular elastic plate
forced into bending vibrations by the application of time harmonic voltages to piezoelectric
actuators attached to its bottom and top surfaces by using the equations of linear elasticity. From
the above mentioned papers, the exact solutions for simply supported rectangular or piezoelectric
plates can be obtained by virtue of Fourier series which satisfied specified boundary conditions.
For circular plates, some investigations on exact solutions for axisymmetric bending or vibrations
have been published. Iyengar and Raman (1978) analyzed the free axisymmetric vibration of
circular plates with arbitrary thickness also utilizing the method of initial function. Because the
governing equation was an infinite-order differential equation, an investigation should be made
on the approximate equation of the desired order after higher-order terms were ignored. Besides,
the three-dimensional boundary conditions could not be exactly satisfied as in problems of simply
supported rectangular plates. Celep (1978, 1980) also made three-dimensional investigation on the
free axisymmetric vibration of circular plates using the method of initial function. In order to
overcome the difficulty of algebraic manipulations of operators in cylindrical coordinates (r, 0, z),
the following assumption was used

(M=U=d$nU@ﬂ,Gw=W=CmWhm
6. = Z = C(NZ(z1), %=R=d$”m;@ (1)

where « and w are displacement components in radial and axial directions, respectively, G is shear
modulus, o. is axial normal stress, t,. is shear stress, U, W, Z, R and C(r) are unknown functions
and C(r) satisfies the following differential equation

d*C(r) 1dC(r)
_l’_ _
dr? r dr

+KC(r) =0 )

where K = +k* (k is an arbitrary constant). Fan and Ye (1990) adopted this assumption to
investigate the axisymmetric vibration of transversely isotropic circular plates. Jiangiao Ye (1995)
studied the axisymmetric buckling of homogeneous and laminated circular plates also using this
assumption. However, it is found that assumption (1) imposes excessive restriction on the state
variables, thus causing confusion in theory. For instance, according to eqns (1) and (2), the
following three boundary conditions
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clamped: U=W =0, atr=a (3a)
simply supported: W =0, o,=0, atr=a (3b)
free: o0,=1,.=0, atr=a (3¢)

all result in C =(dC/dr) = 0 at r = a. Celep (1978, 1980) and Fan and Ye (1990) substituted the
solution of eqn (2), C = AJy(kr)+ Bly(kr), into the three-dimensional axisymmetric state space
equations and derived a set of differential equations with constant coefficients. However, when
Jo(kr) and I,(kr) satisfied eqn (2), K = k* and K = —k? are obtained, respectively. Subsequently,
substitution of Jy(kr) and [,(kr) into governing equations gives distinct coefficient matrices. Hence
the application of two-dimensional boundary conditions conjoining with the above mentioned
form of C yields contradictions in deriving the characteristic equation.

From the above mentioned investigations, it is shown that there are inherent difficulties in
applying the method of initial function in dynamic problems of anisotropic body. In fact, the
three-dimensional exact solutions of free vibration of isotropic circular plates have not been found
yet. This paper applies the finite Hankel transform to the axisymmetric dynamic equations of a
piezoelectric circular plate and renders the free terms of the transformed question in terms of linear
combination of boundary unknowns. Then the exact solutions for two boundary conditions, i.e.
rigid slipping support and elastic simple support, are obtained, respectively. The numerical results
are compared with those of the FEM and good agreement is displayed.

2. State space formulation and its solutions

Consider a p-ply piezoelectric circular laminate of radius a, thickness /4. As shown in Fig. 1, the
cylindrical coordinates (r, 0, z) are employed with the z-axis being along the symmetry axis of the
circular laminate. Each layer has its own local coordinate z-axis as the jth lamina has (r,0, z)). A,
denotes the thickness of the jth lamina. The elastic symmetric axis of every lamina coincides with
the z-axis.

The equations of motion for each of the layers are given by

l¢ Sle |
h1 r
h h J Z r=r
Y
h P
/
\ zZ

Fig. 1. Geometry and coordinate system of p-ply circular laminate.
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where a,, 0y, 0. and t,. are four components of stress, w and u, are axial and radial components of
displacement, respectively, p denotes material density for a given layer and 7 is time. The charge
equation of electrostatics is given as

oD, N 0D. N D,
or 0z ro
where D, and D. are components of electric displacement. Each layer is assumed to be made of a
transversely isotropic piezoelectric material with constitutive equations

0 5)

0, = C118,+C 128+ C138.—e3 E.
Op = C128,+C118g+C138.—e3 E.

C138,+ 1389+ 338, —es3 E.

Q
8]
I

Tz = C44yrz_el5Er
Dr = elSyrz+gllEr
D. = e3y5,+e315 +e3;38.+é33 E. (6)

where s,, 5y, 5. and 7,. are strain components, ¢,;, ¢;», €13, ¢33 and ¢4, are elastic stiffness components,
e,s, €3, and es; are the piezoelectric coefficients, &, and &35 are the dielectric constants, E, and E. are
electric-field components. The displacement components are related to the strain components and
the electric-field components are related to the electrostatic potential ¢ through the relations

OO
S=r T T
ow  ou, 3 ¢
Ty T BT T BTG, )

If the layer is not piezoelectric (i.e. e;s = 5, = €35 = 0), electric and elastic fields are uncoupled
and they can be solved separately. For the jth lamina, if u,, 6., D., 7., w and ¢ are chosen as state
variables, the state space formulation can be written as

- b r 3

u, u,
0. 0.
o | D. 0 A7|D.
e [T [Bj 0} iy L z,e[0,h)) (8)
w w
o), 0,

where z; is the local z-direction coordination of the jth lamina and
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ﬂl 5 _ﬁza
A= or r ’Oarz ©)
0 1 > 10
hfiel) 0 ald)
G > 10 1 0 0]
Pﬁ—ﬁlz <ar2+r8r_ r2> —/375 —ﬁxg
0 1
B, = —pB; (01’ + r> Bo Bio (10)
0 1
i _ﬂs 5 + ; ﬂlo _ﬁll
in which parameters §; (i = 1,2, ..., 13) are defined as
Bir=1/cas, Bo =eis/cas, B3 = 1/(ca3833 +6’§3), Bs = ci3e33—Cy3e3,
Bs = cize33+esiess, Po = Preisten, B =P3Ps, PBs = PiPa, Py = Psess
Bio = Bsess, PBii = Picss, P =cii—cisfr—esifs, Pz =Pia—cii e
The other derived variables are given by
a9
D. = o — By 11:
r B2Tiz ﬁ9 ar ( d)
ou, u,
G;‘=ﬂ70:+ﬂ8D:+ﬂIZE+ﬂl37 (llb)
ou, u,
09:ﬁ7az+ﬁsDz+ﬁ13E+ﬁ127 (11¢)

When the circular plate vibrating with resonant frequency w, the state variables can be assumed
to be in the following form

wt iwt

u. = l/l,.(r, Z)e , 0. = UZ(}", Z) e, Dz = DZ(]/" Z) eiwr

wt

1. =1.(r,2)e", w=w(rz2)e", ¢ = z)e" (12)

Substituting the above expressions into eqn (8) and taking
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- - 1 /ey
l’_lr = ur/h7 6-2 = O-:/C(lll)s Dz = Dz/\/ C(lll)ggl3)s frz = Trz/c(lll)s w = W/ha ¢ = d)% e

1
C(I I)

(=zh, E=rla, t=hla, d=hfh @ =pV’ K[}, p=p/p®"

gives
(a8, ) (7,0 )
7.5, 0) 7.5, 0)
5 D_Z(éa C) O ‘&j ljz(éa él)
— < = - > ,d‘
o) .0 [ [B,- 0} reof S0
w(&, 0) w(&, 0)
L P&, 0) J; L P&, 0) J;
where
i 0 0 i
fi —tafé fza*é
1
O R A
0 1 0? 10
At 0 Aleren)
I (S SN I W o)
- 0 1
B = — + - 10
j fo f+ f) Jo /i
0 1
I S (8é+5> iz Ss |

and the non-dimensional parameters f; (i = 1,2, ..., 13) are defined as
fHi=pBic, fo= =Pt /N, [y = —Pat /N eSY,  fu =1 Ps/esy

fs = _fzﬂlz/c(lll)» Jo=—1p7, fr= —fﬂsx/ 8(313)/6’(111)a fs = —ﬁ113(313)a fo = ﬂL)c(lll)
Bis
Sio = ﬂl()\/ C'(111)3(313)9 S = _[ﬁsx/ 3(313)/0(111)a Ji2= 510\/ C'(111)3(313)a fis = e

1
C(l 1)

(13)

(14)

(15)

(16)

(17

¢, p" and ¢ appearing in eqns (13) and (17) represent the elastic constants, material density
and dielectric constants of the first lamina, respectively. The finite Hankel transform is defined as
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JAS O] = J & O (kS) dS

where J, (k&) is the Bessel function of the first kind. Taking

UQ) = d[a, 01 o) = Jol6.(E, 0], D) = Jo[D.(&, 0]
() =18 0L WO =Jo[w(E Ol @) = o[, 0]
and applying the finite Hankel transform to eqn (14) gives

dR.

T =KRO+Q, (el.d]

where

RO = V) o) DO @) WO oQ)
0 K,

K —

S
S kt =2k

K, =|—kt —pQ’ 0
Sk0 g

[—pQ* —fsk*  —fok  —fik
K, = Sok fo fio
Sk Ji2 Js

and
[ — (1,0, (k) +/2p(1, ), (K) |
_tfrz(la C)Jo(k)
Q~ _ f3f/‘z(19C)J0(k) _f4E_/(19C)J0(k) +f4k<5(17€)‘]1 (k) L
L SslE (L0 () — ke, (1,00 (k) + (1, O, ()] + [f56-(1, O) +£2D-(1, 01, (k)
f6at(1’é’)‘]0(k)
\f.llar(la C)J()(k) )
in which
- (S . _on,(&,0)
El(éaé) = - 86 s Sr(éa C) - 65

Rendering eqns (11a,b) into non-dimensional form and taking £ = 1 result in

JE (LD =D, (L) +£7.(1,0

4635

(18)

(19)

(20)

€2y,

(22)

(23)

24)

(25)

(26)

(27)
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[Gr(la C) = _f66z(17 g) _f7D:(1> C) _ngr(la C) +f131’_lr(15 C) (28)

where

D, = DI/, 7, = o, Je) (9)

Substitution of eqns (27) and (28) into (25) gives

[—tw(1,0J, (k) +£2¢ (1,0, (k)
—17,.(1,0Jy (k)
—1D,(1, o (k) + £k p(1, 0T, (k)

&= ("(;f) £a,(LOJ, (k) —f5ka, (1,074 (k) —16,(1,0.7, (k)

~

(30)

fﬁar(la C)J() (k)
o (1L 0Ty (k)

/

It can be seen that the following two boundary conditions, named as elastic simple support and
rigid slipping support conditions, respectively, will yield Q, = {0}.

(1) w(1,0) =0, d(1,0) =0, [(¢;, —cp2)/ciV e, (1,0) +6,(1,0) = 0 and Jy(k) = 0
) a,(1,0) =0,7%.(1,0) =0, D,(1,{) = 0 and J,(k) = 0.

For these two conditions, eqn (20) becomes

dR;(©)
d¢

= KiRi(C) (el0, di] (31

and its solutions can be written as

R,(0) = T)(OR,(0) (€[0,d)] (32)
where
T,({) = e+ (33)

By virtue of Cayley-Hamilton theorem which is available in the textbook by Deif (1982), T;({)
can be expressed as

TO = al+ X 40K (34)

where I is an identity matrix of order six, K, is defined in eqn (22) and coefficients o,({)
(i=0,1,...,5) can be determined from the following equation
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(0@ 1 e mp oot | e
21 (0) Lom o ma 3 mz on e
o 1 2 3 4 5 61135
J 2(0) L _ M3 ’7; ’7; ’72 ’72 . | (35)
3 (0) L ny ny ny ny m (Shn
24(0) Uons s n3 ns s es*
s [T s me ome me ome | (€'
where n; (i = 1,2,...,6) are the distinct eigenvalues of matrix K;, When equal eigenvalues occur,
eqn (34) will take on other forms.
In eqn (32), taking { = d, yields
Rj(dj) = Tj(dj)Rj(O) (36)

This formulation establishes the relationship between the jth lamina’s physical quantities of the
upper and lower surfaces by the transfer matrix T(d)). In eqn (36), taking j=1, 2,...,p and
considering the continuity conditions of «,, 6., D., 7,., w and ¢ at interfaces as follows:

R,.,(0) = R,(d) (37)
one has

R,((,) = FR,(0) (38)
where

F= [Fkl] = U T/(d/) (39)

For the free vibration problem, the boundary conditions at the bottom and top surfaces of the
laminate can be written as:

o(d,) =1(d,) =a(0) =1(0) =0, D.(d,) =D.(0)=0 forCasel (40)
and

o(d,) =1(d,) =a(0) =1(0) =0, ¢(d,) =¢0)=0 forCase?2 (41)
or

o(d,) =1(d,) =0(0)=1(0)=0, D.(d,)=0, ¢(0)=0 forCase3 (42)

Substituting eqns (40), (41), or (42) into eqn (38), respectively, yields

F,y, F,s Fy U(O)
F31 F35 F36 W(O) =0 (43)
Fy Fys Fy (15(0)

or
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Fy F; Fs|[U(0)

F41 F43 F45 D(O) = 0 (44)
F61 F63 F65_ W(O)

or
_le Fss Fzs_ U(O)
F31 F33 F35 D(O) =0 (45)

LFa1 Fas Fis]IW(0)

Setting the determinant of coefficients matrices of homogeneous eqns (43)—(45) to zero for non-
trivial solutions yields the characteristic frequency equations. The frequency equations are tran-
scendental and give an infinite number of frequencies for each k, which cannot be obtained by
classical theories of plate.

3. Calculating frequency and mode shape

For the elastic simple support condition, the serial roots k; (i = 1,2, ...) of equation Jy(k) =0
must be found and substitution of k,, k,,...one by one into eqns (22)—(24), as well as elastic
constants, piezoelectric coefficients, dielectric constants, material densities and geometric par-
ameters of the laminate, yields the expression of K; (j = 1,2,...,p). After T/(d)) is evaluated from
eqns (34) and (35), the matrix elements Fj; of eqns (43)—(45) are obtained from eqn (39) and the
non-dimensional frequency Q becomes the only unknown in the frequency equations. To find the
solutions of frequency equations, the frequency Q is stepped through a sequence of small increments
and the sign of the determinant is computed for each value and recorded. After a sufficient number
of sign crossings have been identified, the values for Q that yields a zero determinant can be
isolated and refined using bisection. The sign change is monitored by computing the values of the
determinants using the Gauss elimination method. Once the non-dimensional frequency Q is
obtained, substituting it into eqns (43), (44) or (45) yields the ratios of U(0) and W(0) to D(0) or
¢(0), respectively. By virtue of the inverse Hankel transform formulations given by Sneddon
(1951), the corresponding mode shape is obtained as

71 (ki)
7 k[’
w60 =22 Uk D7 o
Jo ki)
=2 Wik, 46
TED = 2T WO (46)

For rigid slipping support conditions, variables k; (i = 1,2, ...) are roots of equation J,(k) = 0.
The following procedure is similar to those of foregoing elastic simple support conditions and the
mode shape is determined by

1 (ki€)

= 2% Ulk,
4,(&,0) Z U( C)[Jo(k)]z
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o (ki)
[o (k)]?

In fact, the corresponding k; of the specified Q has only one and so the right side of eqns (46)
and (47) have only one term.

W(ED =23 Wik 0) (47

4. Transversely isotropic circular plate

If the layer is not piezoelectric, the piezoelectric coefficients e,s, e5, and es; vanish. Then in eqns
(9) and (10), the parameters f3,, f4, fs and f,, become zero with f85, fs, fc and f,, being simplified.
Subsequently, eqns (9) and (10) can be rendered in terms of block-diagonal matrices as well as
eqns (23) and (24) because of f, = f; = f; = fio = f11 = f1» = 0 from eqn (17). Meanwhile, eqns
(11), (25), (27) and (28) are also simplified. For the two boundary conditions defined as above,
i.e. elastic simple support and rigid slipping support conditions, eqn (31) can be uncoupled as

dR*

i~ RO (48)

o~ KR 49

where

RI=[UQ) o) =0 WO, R¥=[DQ) ¢O]" (50)
0 Kf 0 —fik

P 51)
K 0 v 0

Kt = [f vk }: [A,], K% = [_p DA ﬂ —[B,,] (52)
—tk —pQ? fok Jo

The solutions of eqns (48) and (49) are, respectively, obtained as

RA() = ""R}0) (53)

and

R*H(() = eXFR*¥0) (54)

Defining TH() = ¢“* and T*}(() = ¢*'", the relations are obtained by employing Cayley—Hamilton
theorem (Deif, 1982),
o (OI+ a3 (OKTFKS o (OKT + i (OKFKS, ﬁ]

(55)
o (OKE+a3(OKIKTKS  of (OI+ a3 (OKIKT;

TH) = [

and
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*FQ) = FO) fak
R e 56
¥ (0) fs a*F(0)
The parameters ¢*({) in eqn (55) are determined from
ok 1 A, 22 23 | 7Y eMt
of 1 —i A3 =X e Mt
_ 2 N 7
| ok 1 2 224 et
lagk 1 _/12 )\4% _)u; ei/lzg
where
S Bo+2Co+/By—2./Cy VBo+2/Co—+/By—2/Cy
L = D) 5 j~2 = 2 (58)
and
By =A\B+A45,,B,,+2A4,,B,,, Co=(A,1 42, —A3,)(B,1 By, —B1,) (59)

The parameters o*¥({) in eqn (56) are given by

o*f = ch(/ffik0),  o*¥(0) = sh(/fafskO)//fufsk (60)

At each interface between layers, enforcing conditions of displacement and stress and utilizing eqn
(53) gives

R¥(d,) = T*R¥(0) (61)
where
T = (T3] = [[ T(d) (62)

For free vibration, the boundary conditions at the bottom and top of the laminate can be written
as

c(0) = 1(0) = a(d,) = 1(d,) = 0 (63)
Substitution of eqn (63) into (61) yields
T3 T3] (U0 0
= (64)
[ bl = o

Setting the determinant of coefficients matrix of homogeneous eqn (64) to zero for non-trivial
solutions gives the frequency equation of free axisymmetric vibration for transversely isotropic
laminate. The method of evaluating frequencies and relevant mode shapes are similar to those
stated in Section 3.

Similarly, enforcing the continuity conditions of potential and electric displacement at each
interface between layers and using eqn (53) gives
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R*}(d,) = T**R*}(0) (65)
where
T** = [T*%,] = E[ T*Xd)) (66)

For free vibration, the boundary conditions at the bottom and top of the laminate can be written
as

D.(d,) = D.(0) =0 or¢(d,) =¢0)=0 orD.(d) =0, ¢0)=0 (67)
Substituting eqn (67) into eqn (65), respectively, yields
T*%¢(0) =0 or T*%,D(0) =0 or T*F D) =0 (68)

The frequency equation of uncoupled electric fields can be derived from eqn (68).
Equations (53) and (54) can be written as

R;(0) = T,(OR,(0) (69)
where
- RO - THO 0
RO = , T, = 70
© {R*;’té)} © [ 0 T*,*(o} 70
By employing transform matrix P, eqn (69) can also be rendered in terms of
R;(0) = Hi(O)R,(0) (71)
where R;({) is defined as eqn (21) and
R;(0) = PR, (), H,(() = PT,(OP" (72)
in which
10000 0
01 0000
000010
P— (73)
001000
000100
1000001

Based on eqn (71), the investigation on free axisymmetric vibration of hybrid circular laminate
composed of piezoelectric layer and non-piezoelectric layer can be made.
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5. Numerical examples

Utilizing the above mentioned analytical formulations and FEM, three numerical examples are
presented. Based on the theory proposed by Sung et al. (1992), a FEM program is programmed in
Fortran90 and compiled by Microsoft Fortran Powerstation 4.0. In the program, the isoparametric
elements of eight-nodes are used and the eigenvalues are evaluated by sub-space iterative method.

Example 1: Consider a piezoelectric circular plate with material constants:

¢ =13.9x 10" Pa, ¢;; = 7.78 x 10" Pa, ¢;; = 7.43 x 10" Pa,
Ci3 = 115 X 1010 Pa, Cyq = 256 X 1010 Pa, €15 = 127 C/m2, €3 = _52 C/mz,
€33 = 151 C/mz, 811 = 646 X 1079 F/m, 833 = 562 X 1079 F/m

The non-dimensional frequencies under different boundary conditions are shown in Tables 1-4.
These tables list the first three values of k& and the first three frequencies for each k. Data in
parentheses are obtained by FEM. Some corresponding mode shapes are shown in Figs 2-7. The
results indicate that the present solutions include thickness modes and radial ones.

Example 2: Consider a single lamina transversely isotropic circular plate with elastic constants

Cll = 139 X 1010 Pa, Clz = 778 X 1010 Pa, C]3 = 743 X 1010 Pa,
C33 = 115 X 1010 Pa, 644 = 256 X 1010 Pa

Table 5 gives the lowest non-dimensional frequencies computed by the present exact method and

Table 1
The non-dimensional frequencies of a piezoelectric circular plate with rigid slipping support (Case 1)

ki, = 3.83171 k, = 7.01559 ky = 10.17350

t=hla Q Q, Q, Q Q, Q, Q, Q, Q,

0.1 0.0385 03554  1.7722 0.1231  0.6454  1.8553 0.2425 09237  1.9720
(0.0386) (0.1232) (0.2430)

0.2 0.1451  0.7034  1.8768 04209  1.2431  2.1445 07573  1.6846  2.4615
(0.1451)  (0.7034) (0.4212)

0.3 0.3003  1.0361  2.0281 0.7966  1.7250  2.4976 13466 2.1243  2.9783
(0.3004)  (1.0361) (0.7972)

0.4 04865  1.3434 22072 12108 2.0398  2.8567 1.9489  2.4589  3.4470
(0.4865)  (1.3433) (1.2029)

0.5 0.6913  1.6115  2.4003 1.6164 22717  3.1951 2.5451  2.8448  3.8770
0.6913)  (1.6117) (1.6163)

0.6 0.9070  1.8278  2.5980 20315 2.5082  3.5076 3.1284 32881  4.3078
(0.9069)  (1.8729) (2.0317)

0.7 11291 1.9938  2.7942 24429 27736 3.8037 3.6967 37711 4.7659
(1.1289)  (1.9940) (2.4437)

0.8 13544 2.1286  2.9847 28484 3.0678  4.0973 42512 42785  5.2591

(1.3542)  (2.1289) (2.8478)
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Table 2
The non-dimensional frequencies of a piezoelectric circular plate with rigid slipping support (Case 2)

ki, = 3.83171 k> = 7.01559 k; = 10.17350

t=hla Q Q, Q, Q, Q, Q, Q, Q, Q,

0.1 0.0384  0.3092  1.3880 0.1217  0.5626 14742 02379  0.8074  1.5943
0.2 0.1432  0.6135  1.4964 04102  1.0920  1.7718 0.7345  1.5023  2.1022
0.3 0.2938  0.9071  1.6520 0.7724  1.5422  2.1404 13063 1.9765  2.6646
0.4 04733 1.1827  1.8366 1.1654  1.8795  2.5289 1.8943  2.3453  3.2055
0.5 0.6707 14317  2.0377 1.5695  2.1433 29117 24763 27402 3.7078
0.6 0.8793  1.6468  2.2474 1.9750  2.3969  3.2767 3.0437  3.1809  4.1928
0.7 1.0947  1.8273  2.4601 23766 2.6685  3.6231 3.5947  3.6560  4.6877
0.8 13140  1.9816  2.6719 27715 29628  3.9587 41314 41524 5.2058

Table 3
The non-dimensional frequencies of a piezoelectric circular plate with elastic simple support (Case 1)

ky = 2.40483 k> = 5.52008 ky = 8.65373

t=hla Q Q, Q, Q Q, Q, Q, Q, Q,

0.1 0.0154 02235  1.7494 0.0782  0.5101  1.8112 0.1814 07912 1.9123
(0.0154) (0.0782) (0.1816)

0.2 0.0600  0.4452  1.7933 0.2800  0.9977  2.0084 0.5906  1.4879  2.3060
(0.0600)  (0.4452) (0.2801)

0.3 0.1297  0.6633  1.8618 0.5508  1.4347  2.2684 1.0789  1.9601  2.7505
(0.1297)  (0.6633) (0.5509)

0.4 0.2195  0.8757  1.9496 0.8551  1.7814  2.5511 1.5890  2.2568  3.1736
(0.2195)  (0.8757) (0.8554)

0.5 0.3246  1.0803  2.0516 1.1747 20230  2.8335 2.1008  2.5505  3.5580
(0.3245)  (1.0803) (1.1744)

0.6 0.4409  1.2743  2.1636 1.5004  2.2088  3.1034 2.6063  2.8884  3.9210
(0.4408)  (1.2743) (1.5001)

0.7 0.5653  1.4544 22821 1.8275 23887  3.3567 3.1020  3.2668  4.2876
(0.5652)  (1.4543) (1.8273)

0.8 0.6957  1.6167  2.4044 21533 2.5832  3.5959 3.5870  3.6746  4.6738

(0.6955)  (1.6166) (2.1533)
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Table 4
The non-dimensional frequencies of a piezoelectric circular plate with elastic simple support (Case 2)

ki = 2.40483 k, = 5.52008 k; = 8.65373

t=hla Q Q, Q, Q, Q, Q, Q, Q, Q,

0.1 0.0154  0.1944  1.3641 0.0776  0.4442 14285 0.1785  0.6907  1.5329
0.2 0.0596  0.3876  1.4099 0.2741 08730  1.6318 0.5736  1.3153 19391
0.3 0.1281  0.5783  1.4808 0.5353  1.2662  1.9000 1.0459  1.7895  2.4123
0.4 02156 0.7651  1.5713 0.8290  1.5990  2.1972 1.5427  2.1267  2.8870
0.5 03172 09464  1.6761 1.1390  1.8604  2.5033 2.0426 24408  3.3359
0.6 04293  1.1202  1.7915 14563  2.0729  2.8064 2.5358 27839 3.7584
0.7 0.5493  1.2843  1.9142 1.7757 22708  3.0996 3.0181  3.1599  4.1706
0.8 0.6750  1.4366  2.0421 2.0939 24746  3.3804 3.4884  3.5613  4.5896

FEM. A good agreement is reached. This example and the next employ the characteristic eqn (64)
to evaluate the frequencies.

Example 3: A three-ply laminated circular plate. The first and third laminae are made of isotropic
material of Young’s modulus E = 2.1 x 10'' Pa and Poisson’s ratio u = 0.3 and the second one is
made of transversely isotropic material. Its elastic constants are the same as those of Example 2.
Three laminae have thicknesses of /s, =h;=h/4 and h,=h/2 and their densities are
pr = p;=7.8x10° kg/m* and p, = 7.5x 10° kg/m’, respectively. Table 6 gives the lowest non-
dimensional frequencies computed by the present exact method and FEM. A good agreement is
also reached. Tables 7 and 8 list the first three values of k and the first three frequencies for
each k.

6. Conclusions

(1) The state-space-based method and the finite Hankel transform are employed to analyze the
free axisymmetric vibration of piezoelectric laminated circular plates. It is found that exact
solutions can be obtained for two kinds of boundary conditions. These solutions can be used
to examine the validity of various plate theories and numerical calculation software.

(2) The numerical examples show that the non-dimensional frequencies increase with the increase
of thickness-to-span ratio and frequencies for elastic simple support boundary condition are
obviously smaller than those for rigid slipping supported one.

(3) The comparison between the present results and FEM results shows that if all frequencies for
distinct k are arranged in order of their values, good agreement can be observed.
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(a) €©=0.0385, 1=0.1

(b) €2=0.1231, #=0.1

(c) ©=0.2425, 1=0.1

Fig. 2. The mode shapes of a piezoelectric circular plate with rigid slipping support (Case 1) (- --, initial mesh; —, the
present theory; o, FEM).
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(a) €Q=0.1451, 1=0.2

(b) €2=0.4209, ¢=0.2

PR N N K N

(c) €Q=0.7034, 1=0.2

Fig. 3. The mode shapes of a piezoelectric circular plate with rigid slipping support (Case 1) (- - -, initial mesh; —, the
present theory; o, FEM).
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(c) Q=1.6164, 1=0.5

Fig. 4. The mode shapes of a piezoelectric circular plate with rigid slipping support (Case 1) (- - -, initial mesh; —, the
present theory; o, FEM).
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(a) Q=0.0154, 1=0.1

(b) ©Q=0.0782, 1=0.1

(c) Q=0.1814, 1=0.1

Fig. 5. The mode shapes of a piezoelectric circular plate with elastic simple support (Case 1) (---, initial mesh; —, the
present theory; o, FEM).
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(c) ©=0.4452, 1=0.2

Fig. 6. The mode shapes of a piezoelectric circular plate with elastic simple support (Case 1) (- - -, initial mesh; —, the
present theory; o, FEM).
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Fig. 7. The mode shapes of a piezoelectric circular plate with elastic simple support (Case 1) (- - -, initial mesh; —, the
present theory; o, FEM).
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Table 5
The first non-dimensional frequency of a single lamina circular plate

Rigid slipping support Elastic simple support
t=hla Present FEM Present FEM
0.1 0.0332 0.0333 0.0133 0.0133
0.2 0.1233 0.1233 0.0516 0.0516
0.3 0.2505 0.2505 0.1104 0.1105
0.4 0.3985 0.3986 0.1847 0.1848
0.5 0.5573 0.5574 0.2699 0.2700
0.6 0.7214 0.7216 0.3625 0.3626
0.7 0.8879 0.8881 0.4600 0.4601
0.8 1.0550 1.0558 0.5607 0.5608

Table 6
The first non-dimensional frequency of a three-ply circular plate

Rigid slipping support Elastic simple support
t=hla Present FEM Present FEM
0.1 0.0353 0.0353 0.0143 0.0143
0.2 0.1248 0.1249 0.0541 0.0542
0.3 0.2419 0.2420 0.1125 0.1125
0.4 0.3706 0.3707 0.1824 0.1825
0.5 0.5044 0.5045 0.2592 0.2593
0.6 0.6410 0.6411 0.3399 0.3399
0.7 0.7798 0.7799 0.4228 0.4229
0.8 0.9209 0.9211 0.5073 0.5073

Table 7
The non-dimensional frequencies of a three-ply circular plate with rigid slipping support

k, = 3.83171 k, = 7.01559 ky = 10.17350

t=hla Q Q, Q, Q Q, Q, Q, Q, Q,

0.1 0.0353  0.2906  1.0642 0.1071  0.5262  1.1757 0.1997  0.7477  1.3261
0.2 0.1248  0.5728  1.2039 03263  0.9883  1.5411 0.5465  1.2607  1.9230
0.3 0.2419  0.8348  1.3969 0.5714  1.2808  1.9656 09160  1.4598  2.4959
0.4 0.3706  1.0580  1.6179 0.8252  1.4200  2.3704 13029 1.6630  2.8826
0.5 0.5044 12225  1.8505 1.0870  1.5404  2.6960 17085  1.9562  3.1086
0.6 0.6410  1.3283  2.0825 13576 1.6980  2.9203 21296 23230 3.2909
0.7 0.7798  1.3998  2.3031 1.6371  1.8995  3.0753 2.5578 27387 3.4885

0.8 0.9209 1.4620 2.5024 1.9246 2.1383 3.2032 2.9782 3.1848 3.7270
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Table 8
The non-dimensional frequencies of a three-ply circular plate with elastic simple support

k, = 2.40483 k, = 5.52008 ky = 8.65373
t=hla Q, Q, Q Q, Q, Q Q, Q;
0.1 0.0143 0.1829 1.0325 0.0698 0.4166 1.1171 0.1533 0.6431 1.2499
0.2 0.0541 0.3638 1.0930 0.2272 0.8053 1.3721 0.4394 1.1511 1.7375
0.3 0.1125 0.5405 1.1842 0.4133 1.1180 1.6921 0.7484 1.3852 2.2552
0.4 0.1824 0.7101 1.2976 0.6084 1.3074 2.0280 1.0694 1.5316 2.6778
0.5 0.2592 0.8684 1.4261 0.8083 1.4125 2.3456 1.4038 1.7288 2.9498
0.6 0.3399 1.0104 1.5645 1.0313 1.5041 2.6165 1.7516 1.9913 3.1281
0.7 0.4228 1.1304 1.7087 1.2232 1.6148 2.8215 2.1102 2.3050 3.2825
0.8 0.5073 1.2253 1.8854 1.4390 1.7530 2.9710 2.4743 2.6547 3.4474
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